
Towards Reasoning  
in the presence of

code of unknown provenance 

- or, trust and risk in an open world -

 
Sophia Drossopoulou (Imperial),

James Noble (Victoria University Wellington),
Toby Murray (NICTA),

Mark S. Miller (Google)

Reasoning with Code of Unknown
Provenance  

Hoare	Rules	-	Method	Call

PRE(m,C)=	P																				POST(m,C)=Q																																																									 
x	:	C	⋀	P[x/this,y/par]					{	z=	x.m(y)	}					Q[x/this,y/par,z/res]							

When	receiver	belongs	to	class	C

		And	if	I	know	nothing	about	receiver?

																																												 
true		{	z=	x.m(y)	}		true		 

 In this talk, we argue:

We can do better than that.
It is important to do better than that.

Trust and Risk in Open Systems
- research questions -

• Objects collaborate with other objects of unknown provenance.

• Objects may unknowingly be dealing with malicious objects; they are
therefore exposed to risks.  
Nevertheless, they proceed with the business.

• No central trusted authority.

• Therefore,

• “our” code must be very “robust”,

• we need means to specify trust and risk.

• we need means to reason about adherence to such specifications.

Trust and Risk in Open Systems
- our contributions -

• To specify trust and risk, we propose

• obeys predicate: an object adheres to a specification,

• MayAccess predicate: an object may read some property

• MayAffect predicate: an object may affect some property

• Predicates obeys, MayAccess and MayAffect are hypothetical
and often conditional.

• Hoare logic rules to reason about trust and risk.

• Apply our ideas on the Escrow Exchange (Miller et.al., ESOP’13).

Our findings for the Escrow

• We could write the specification.

• We could prove adherence to specification (by hand).

• The specification is weaker than we, and the Escrow
authors, had expected.

• Simplifying Assumptions:
• We do not consider concurrency and distribution (code in ESOP’13

does).

• We assume that different arguments to our methods are not aliases
(but easy to expand).

Escrow Agent - Our running example

Remaining Talk

Terminology: open world, trust and risk

Hoare Logic

Terminology: open, trust and risk

What	do	we	mean	by	open	system?

 

M’ represents the “adversary”.

Arising(M’*M) restricts configurations to those reachable
though execution of code from M’*M.

Definition
M ⊨ Policy iff
 ∀ M’. 
 ∀ 𝜅 ∈ Arising(M’*M): M’*M, 𝜅 ⊨ Policy

We model open systems through dynamic linking of any,
unknown, potentially malicious module M’.

What	do	we	mean	by	trust?
Trust is relative to a configuration (𝜅), an object reference (o) 
and a policy-specification (Policy).

 trust is hypothetical; no “trust” bit.

Definition
M, 𝜅 ⊨ o obeys Spec iff  
 ∀ Policy ∈ Spec.  
 ∀ 𝜅’∈Reach(M, 𝜅): M, 𝜅’ ⊨ Policy[o/this]  

Reach(M, 𝜅): intermediate configurations reachable from 𝜅.

What	do	we	mean	by	risk?
 
Risks are effects against which we want to guard our
objects.

			policy	Pol_deal_1:	 
			pre:		…. 
										{	res	=	this.deal(m,g)	;	} 
				post:		….	 
				∀	p.	p	obeys	ValidPurse	….		 
											[p.balance	=	p.balancePRE				∨			 
														∃bp.	…	¬	(bp	obeys	ValidPurse)	⋀	MayAccessPRE	(bp,p)] 
															

Escrow Agent - Our running example

Escrow Agent - Remit

• Buyer and Seller	want to exchange g goods for m money.

• Buyer does not trust Seller; Seller does not trust Buyer.

• Escrow Agent to make the exchange.

• If insufficient money or goods, then no exchange.

• Escrow Agent does not trust Buyer nor Seller, nor any
Banks.

• Escrow Agent to mitigate risk to Buyer and Seller.

(proposed by Miller, van Cutsem, Tulloh, ESOP 2013)

Escrow Agent - First Attempt

buyerMoney:
M1 $

buyerMoney:
M1 $

buyerGoods:
G1 🍋

escrowMoney:
?? $

Exchange of g goods for m money

1. pay m to escrowMoney
 from buyerMoney

then exit

// sufficient money

4. if no success

5. pay g to buyerGoods 
 from escrowGoods

6. pay m to sellerMoney 
 from escrowMoney

M1-m $

3. pay g to escrowGoods
 from sellerGoods

0 $ m $

M1-m $

 m $
escrowMoney:

m-m $

buyerMoney:
M1-m+m $

pay m to buyerMoney
 from escrowMoney

2. if no success

sellerMoney 
M2 $

escrowGoods: 
?? 🍋

escrowGoods: 
0 🍋

buyerMoney:
M1-m $

escrowMoney:
m $

// sufficient money and goods

escrowGoods: 
g 🍋

sellerGoods
G2 🍋

sellerGoods
G2 - g 🍋

exit

buyerGoods:
G1+ g 🍋

escrowGoods: 
0 🍋

escrowMoney:
0 $

sellerMoney 
M2 + m $

then

The Escrow purses
• intermediate store of m money, and g goods

• allow exchange to be undone, if insufficient goods or
money

• Agent interrogates the escrow purses, to determine
whether deposits were successful.

• Therefore, the correctness of process depends on the
integrity of the escrow purses.

• But … where do escrow purses come from?

Where do Escrow	Purses come from?

• The Agent has them before the transaction.  
 

• Seller and Buyer supply the escrows purses.  
 

• The Agent asks the associated Banks to	supply	the	escrows	purses.  
 

• The Agent asks sellerMoney to make one, and buyerGoods to make another one.  

No! This would require the Agent to know about all possible purses.
Remember, no central authority.

No! It would require Seller and Buyer to have agreed before the
transaction. Remember: Seller and Buyer	do not trust each other.

Yes!

No! It would require the Agent to know about all possible banks.
Remember, no central authority.

buyerMoney:
M1 $

buyerGoods:
G1 🍋

escrowMoney:
?? $

Exchange of g goods for m money

1b.res=	escrowMoney.	
						deposit	(buyerMoney,m)

then exit

// sufficient money

4. if !res

5. buyerGoods. 
												deposit(escrowGoods,g)

6. sellerMoney.	
						deposit	(escrowMoney,m)

3b. res	= escrowGoods.	
							deposit	(buyerGoods,g)

2. if !res

sellerMoney 
M2 $

escrowGoods: 
?? 🍋

escrowGoods: 
0 🍋

// sufficient money and goods

escrowGoods: 
g 🍋

sellerGoods
G2 🍋

sellerGoods
G2 - g 🍋

exit

buyerGoods:
G1 + g 🍋

escrowGoods: 
0 🍋

sellerMoney 
M2 + m $

then

1a. escrowMoney	
													=	sellerMoney.sprout()

3a. escrowGoods = 
 buyerGoods.sprout()

buyerMoney.deposit		
									(escrowMoney,m)

Escrow Agent code - v1

buyerMoney:
M1-m $

buyerMoney:
M1-m+m $

buyerMoney:
M1 - m $

escrowMoney:
0 $

escrowMoney:
m $

escrowMoney:
m-m $

escrowMoney:
m $

escrowMoney:
0 $

Risk and Trust 
Has Escrow Agent version1 fulfilled its remit?

• Buyer and Seller	want to exchange g goods for m money.

• Buyer does not trust Seller; Seller does not trust Buyer.

• Escrow Agent to make the exchange.

• If insufficient money or goods, then no exchange.

• Escrow Agent does not trust Buyer nor Seller, nor any
Banks.

• Escrow Agent to mitigate risk to Buyer and Seller.

1b.res=	escrowMoney.	
						deposit	(buyerMoney,m)

then exit2. if !res

buyerMoney:
M1$

sellerGoods
G2 	

buyerGoods:
G1

escrowMoney:
 $

sellerMoney 
M2 $

1a. escrowMoney =  
 sellerMoney.sprout()

🍋

🍋

• received m$ from buyerMoney,	and	
reported false?

• took more than m from buyerMoney?

Risks 
 

What if escrowMoney was malicious, and

 true	{		escrowMoney.	deposit()		}	true		
 
 How much damage can it make?

Escrow Agent - Second Attempt

• Extend Purse’s remit to ascertain trust and limit risk.

• Add introductory phase to Escrow Agent code,
which assesses trustworthiness of Purses.

Escrow	Agent	-	Second	Attempt
summary

Escrow Agent - Second Attempt

ValidPurse specification

ValidPurse specification v2- overview

res=true						implies					trust,	enough	funds,	and	transfer	of	amt

					specification	ValidPurse{

					policy	Pol_deposit_1:

res=false					implies				no	trust	or	not	enough	funds,	and	no	transfer

					policy	Pol_deposit_2:

					policy	Pol_sprout:

res	is	a	new		Purse	of	same	trustworthiness

					policy	Pol_protect_balance:
balance	cannot	be	affected,	unless	you	hold	the	purse	itself

{		res=this.deposit(prs,	amt)		}

{		res=this.deposit(prs,	amt)		}

{			res=this.sprout()		}

ValidPurse - deposit_1

{		res=this.deposit(prs,	amt)		}

					policy	Pol_deposit_1:
pre:	amt	:	Number	⋀		amt	≧	0

post:	 
res		=	true	→ 
										

										//	TRUST  
																																	prs	obeys	ValidPurse				⋀ 

											//	RISK  
																					∀	p,	o.	 
																					(p	obeyspre	ValidPurse	⋀	o	:pre	Object.	→ 
																																				[p≠prs,this	→	p.balancepre	=	p.balance]			⋀ 
																																				[MayAccess(o,p)	→	MayAccesspre(o,p)])

//	FUNCTIONAL  
																				prs.balancepre	-	amt	≧	0		⋀	 
																				prs.balance	=	prs.balancepre	-	amt	⋀	 
																				this.balance	=	this.balancepre		+	amt	⋀									

Note:					conditional trust

					policy	Pol_protect_balance:

ValidPurse - protect_balance

	∀	p,	o.	 
																					(p	obeys	ValidPurse	⋀	o	:Object.	→ 
																												[MayAffect(o,p.balance)	→	MayAccess(o,p)])

balance	cannot	be	affected,	unless	you	hold	the	purse	itself

Note - necessary, rather than  
 sufficient condition

Escrow Agent - Second Attempt

code

EscrowAgent - establishing trust

buyerMoney:
M1$

sellerMoney 
M2 $

res=	escrowMoney.	deposit	(buyerMoney,0)

//	sellerMoney	obeys	ValidPurse	→	escrowMoney	obeys	ValidPurse

if !res	then exit

escrowMoney	=	 sellerMoney.sprout()

//	res=true	∧	escrowMoney	obeys	ValidPurse	 
//																																																			→	buyerMoney	obeys	ValidPurse

//	sellerMoney	obeys	ValidPurse	→	buyerMoney	obeys	ValidPurse

res=	buyerMoney.	deposit	(escrowMoney,0)

	//	sellerMoney	obeys	ValidPurse			→																					 
	//																		 (buyerMoney	obeys	ValidPurse)

//	res=true	∧	buyerMoney	obeys	ValidPurse	 
//																																																		→	escrowMoney	obeys	ValidPurse

res=	escrowMoney.	deposit	(buyerMoney,0)

//		buyerMoney	obeys	ValidPurse		↔	seller	obeys	ValidPurse

if !res	then exit

escrowMoney:
$ 0

if !res	then exit

EscrowAgent - the risk while establishing trust

buyerMoney:
M1$

sellerMoney 
M2 $

res=	escrowMoney.	deposit	(buyerMoney,0)

if !res	then exit

escrowMoney	=	 sellerMoney.sprout()

res=	buyerMoney.	deposit	(escrowMoney,0)

res=	escrowMoney.	deposit	(buyerMoney,0)

if !res	then exit

escrowMoney:
$ 0

//	∀p.	p	obeysPRE	ValidPurse→ 
//							[p.balancePRE=p.balance			⋁	 
//																MayAccessPRE(sellerMoney,p)	⋀	¬(sellerMoney	obeys	ValidPurse)]

//	….

//	….

//∀p.	p	obeysPRE	ValidPurse	→ 
//			[p.balancePRE=p.balance			⋁	 
//						MayAccessPRE(sellerMoney,p)	⋀	¬(sellerMoney	obeys	ValidPurse)	⋁ 
//						MayAccessPRE(buyerMoney,p)	⋀	¬(buyerMoney	obeys	ValidPurse)]						

if !res	then exit //	….

//	….

//∀p.	p	obeysPRE	ValidPurse	→ 
//			[p.balancePRE=p.balance			⋁	 
//						MayAccessPRE(sellerMoney,p)	⋀	¬(sellerMoney	obeys	ValidPurse)	⋁ 
//						MayAccessPRE(buyerMoney,p)	⋀	¬(buyerMoney	obeys	ValidPurse)]						

EscrowAgent the full code
1st	phase:		
trustworthiness		buyerMoney	and	sellerMoney				
—	as	in	previous	slide	

2nd	phase:		
trustworthiness	buyerGood	and	sellerGood			
—-	similar	to	previous	slide	

3rd	phase:		
Do	the	transaction			
	—-	as	a	couple	of	slides	ago	

		

Escrow Agent - Second Attempt

The specification

For 		res	:=	this.deal(m,g)										we have four cases: 
								

					policy	Pol_deal_1:
	res			⋀			buyer	and	seller	“are	good”									⇒ 
	sufficient	money/goods,	exchange	proceeded,	no	other	Purse	affected

					policy	Pol_deal_2:

					policy	Pol_deal_3:

					policy	Pol_deal_4:

¬	res			⋀			buyer	and	seller	“are	good”					⇒ 
insufficient	money/goods,	no	Purse	affected

¬	res		⋀				buyer	or	seller	“is	bad”,	but	not	both			⇒ 
no	Purse	affected	unless	malicious	participant	had	access	before

res		⋀				buyer	and	seller	“are	bad”																									⇒ 
no	Purse	affected	unless	malicious	participant	had	access	before

“Surprises”:		
deal method not as “risk-free” as expected
res=true does not imply successful
transaction, nor that participants were good.

Hoare Logic

Hoare	Tuples
• Hoare tuples of form P { code }	Q⋈Q’	

• P	a one-state assertion,	Q,	Q’	two-state assertions.

• P { code }	Q⋈Q’		promises that if the initial configuration satisfies
P, then the final configuration will satisfy Q,  

• M	⊨	P { code }	Q⋈Q’		iff		 
					∀	M’.	∀ 𝜅 ∈ Arising(M’*M):  
 (M’*M, 𝜅 ⊨ P					⋀ M’*M, 𝜅 ⤳ 𝜅’  
 → M’*M, 𝜅, 𝜅’ ⊨ Q)  
						

P { code }	Q⋈Q’

and all intermediate configurations will satisfy Q’.	

and 
(∀	𝜅’’ ∈ Reach(M’*M, code,𝜅): M’*M, 𝜅, 𝜅’’ ⊨ Q’)

Hoare	Rules	-	Structural	(some)
P	{code}	Q		⋈	Q’																																																	 
P	{code}	Q	∧	Q’		⋈	Q’						

 
P’→	P							Q	→	Q’’									Q’	→	Q’’’

P	{code}	Q		⋈	Q’			

											P	{code}	Q		⋈	Q’	 
											Spec	=		spec{	Pol_1,	…Pol_i,	…	Pol_n	}																																												 
											P	{code}	Q		⋈		Q’	⋀∀x.x	obeys	Spec	→	Pol_i[x/this]				

P’	{code}	Q’’		⋈	Q’’’			

 
P’,	Q’→	P													
P	{code}	Q		⋈	Q’’			

P’	{code}	Q’→	Q	⋈	Q’’’			

P’→	P					iff				𝜅		⊨	P’		implies		𝜅		⊨	P													
Q→	Q’’				iff				𝜅,	𝜅’	⊨	Q	implies		𝜅,	𝜅’	⊨	Q’’													

P’,Q’→	P						iff		 
						𝜅		⊨	P’	∧		𝜅,	𝜅’	⊨	Q’	implies		𝜅	⊨	P													

Hoare	Rules	-	Method	Call

PRE(m,Spec)=	P										POST(m,Spec)=Q																																																									 
x	obeys	Spec	⋀	P[x/this,y/par]			{	z=	x.m(y)	}		Q[x/this,y/par,z/res]	⋈	true							

when	receiver	is	trusted	to	obey	Spec

and	regardless	of	whether	receiver	is	trusted

																																																								 
true		{	z=	x.m(y)	}		true		⋈		∀	u,v.	MayAccess(u,v)			→			 
																																																							(MayAccess(u,v)	pre		⋁ 
																																																															(MayAccess(x,u)	pre		⋁		MayAccess(y,u)	pre)		∧ 
																																																															(MayAccess(x,v)	pre		⋁		MayAccess(y,v)	pre))

Hoare	Rules	-	Framing

P	{code}	Q		⋈	Q’	 
P	∧	Q’		→		Footprint(code)	disjoint	Footprint(P’)																																																		 
P	∧	P’	{code}	Q	∧	P’		⋈	Q’	∧	P’							

																																																					 
P	{code}		true		⋈		∀u.	MayAffect(u,P’)			→		Q’(u)  
P	{code}		true		⋈		∀	u. Q’(u)																																																																																																		 
P	∧	P’	{code}		true		⋈		P’																																																

Summary
• We introduced MayAccess, MayAffect, and obeys.

• These are hypothetical and conditional predicates.

• Hoare tuples extended by properties preserved. New Hoare
rules.

• The concept of encapsulation needs to percolate to
specification level.

• More work for concurrency, distribution, expressivity, framing,
examples, encapsulation. More case studies. Ongoing
design: refinement of the predicates, and new predicates.

Conclusions

We need to specify

• what will happen,

• as well as what will not happen

 In this talk, we argued:

We can reason in the presence of
“untrusted”/“unknown” code
It is important to do that.

